

Tytuł szkolenia: Fundamentals of OpenStack® Technology

Kod szkolenia: H6C68S

Wprowadzenie

This course teaches administrators and users to configure, manage and use the OpenStack® cloud services platform. An architectural overview ensures understanding of various OpenStack projects and their functions. Hands-on labs provide configuration and operations experience with major aspects of the OpenStack environment. Course content and labs are based on the OpenStack Ussuri release.

Adresaci szkolenia

System administrators, engineers and consultants who plan and manage OpenStack-based environments

Prerequisites

HPE recommends that students attain the following credentials or levels of experience before taking this course:

- Completion of HPE Linux Fundamentals (HJ7M0S)
- Completion of Linux for Unix Administrators (GL615) (U2794S)

Cel szkolenia

After completing this course, students should to be able to:

- Describe the purpose and features of OpenStack
- · Describe its high level architecture and list its major components
- Describe methods of access to OpenStack services
- Manage identities in an OpenStack cloud
- Launch and manage instances
- Create and manage images, volumes, networks and store objects
- Create, launch and monitor simple autoscaling stacks

Certifications and related examinations

- Certified OpenStack Administrator (COA)
- EXIN Foundation Certificate in OpenStack Software Additional study and preparation may be required to pass the exams

Czas i forma szkolenia

• 21 godzin (3 dni x 7 godzin), w tym wykłady i warsztaty praktyczne.

Plan szkolenia

Module 1: OpenStack Technology Overview

- What is a cloud; what is OpenStack
- OpenStack architecture
- Your lab system

Module 2: Accessing OpenStack

- OpenStack API, endpoints and WSGI
- Authentication and tokens
- The OpenStack command line and dashboard

Module 3: Keystone (Identity)

- Keystone concepts
- Keystone API versions
- Keystone command line
- Authentication, authorization and policies

Module 4: Nova (Servers)

- Nova concepts
- $\circ\,$ How a user sees Nova instances
- o Instances, keypairs, console, IP addresses, security groups, instance specific data
- · Launch instances and make them available on the network
- Customize an instance with user data
- Nova implementation
- Nova microversions
- Nova architecture
- What happens when an instance is launched
- \circ Nova scheduler and placement service
- Managing compute nodes: regions, cells, aggregates, availability zones
- Nova troubleshooting

Module 5: Glance (Images)

- Glance concepts
- Where to get images
- \circ Disk and container formats
- Uploading images
- \circ Where images are stored

Module 6: Neutron (Networks)

- Neutron resource abstractions
- Networks, subnets, ports, routers
- o Provider networks, external networks, tenant networks
- \circ Floating IPs and address translation
- Network implementation
- \circ Network separation and access
- Routing
- o Plugins and agents
- The ML2 plugin
- Command examples

Module 7: Cinder (Block Storage - LUNs)

- Basic concepts and commands
- OpenStack storage overview
- \circ What cloud operators and users want from storage
- \circ Storage drivers
- \circ Creating, deleting, attaching, detaching, listing volumes
- Using volumes as boot disks
- Multi-attach
- Cinder implementation
- Advanced concepts
- \circ Backends, volume types and extra specs
- \circ Snapshots
- Backups
- HPE storage and Cinder
- Module 8: Swift (Object Storage)
- Swift concepts
- Why object storage

- \circ Accounts, containers, objects, replication
- Using Swift
- Uploading and downloading objects
- Access control with ACLs
- TempURL
- Large objects
- Swift architecture

Module 9: Ceilometer (Metering) and Heat (Orchestration)

- Ceilometer and the telemetry family
- Telemetry architecture and dataflow
- Ceilometer sampling and publishing to Gnocchi
- Alarms
- Heat: orchestrating a cloud application
- \circ Heat architecture, templates and stacks
- \circ Example template
- \circ Heat and autoscaling
- \circ Launching and viewing a stack

Lab 1: OpenStack Overview

- Lab 1a: Accessing and setting up your lab environment
- Lab 1b: Obtaining OpenStack documentation
- Lab 2: Accessing OpenStack
- Lab 2a: The dashboard
- Lab 2b: Discovery
- Lab 2c: The command line
- Task 1: Command line completion
- Task 2: A few CLI commands
- Lab 2d: The OpenStack shell

Lab 3: Keystone

- Lab 3a: Keystone configuration
- Lab 3b: Keystone access using the command line
- Task 1: Explore Keystone endpoints and API versions
- Task 2: List identity resources and explore their details
- Task 3: Create domains and projects
- Task 4: Explore roles and associated privilege
- Task 5: Use the GUI's RC file to set your identity
- Task 6: Explore the system scope
- Lab 3c: Using Horizon for identity administration

Lab 4: Nova

- Lab 4a: Discover the Nova implementation
- Task 1: Configuration files
- Task 2: Nova processes and services
- Lab 4b: Create an instance using the GUI
- Task 1: Enter essential instance details
- Task 2: Check networks and add a keypair
- Lab 4c: Create an instance from the command line
- Task 1: Verify Nova services
- Task 2: Gather necessary information
- Task 3: Create a key pair
- Task 4: Launch the instance
- · Lab 4d: Access instances through their consoles

- Task 1: View instance console content
- Task 2: Use two methods to open interactive instance consoles
- Task 3: Confirm that the two instances have network connectivity to each other
- Lab 4e: Enable instance access from the network
- Task 1: Add floating IP addresses to the instances
- Task 2: Explore the default security group
- Task 3: From the GUI, create a security group that permits ICMP traffic
- Task 4: From the command line, add an SSH rule to the security group
- Task 5: Test ssh access
- Lab 4f: Instance metadata
- Task 1: Simple metadata
- Task 2: Use cloud-init to personalize an instance
- Lab 4g: Other instance actions
- Task 1: Create a snapshot
- Task 2 (optional): Pause an instance
- Task 3 (optional): Suspend an instance
- · Lab 4h (optional): Create an instance that can't be scheduled
- Task 1: Look into a failed instance launch
- Task 2: Explore the placement service

Lab 5: Glance

- Lab 5a: Discover your Glance implementation
- Lab 5b: Use Glance
- Task 1: Create a Glance image in Horizon
- Task 2: The Glance command line classic image upload and other tasks

Lab 6: Neutron

- Lab 6a: Discover Neutron configuration settings
- Task 1: Explore configuration files
- Task 2: Explore the running system
- Lab 6b: Explore your networks
- Task 1: Explore your networks using the GUI
- Task 2: Explore your networks from the command line
- Task 3: Delete unneeded networks
- Lab 6c: Create a network and connect VMs
- Task 1: Use the CLI to create a new network and router
- Task 2: Find out why the router was not connected to the private network
- Task 3: Solve this problem with the CLI
- Task 4: Launch the second-tier instance
- Task 5: Launch the first-tier instance
- Task 6: Create a route between the instances
- Lab 6d (optional): Role-based access control
- Task 1: Share a network
- Task 2: Share a security group

Lab 7: Volume Management (Cinder)

- Lab 7a: Cinder configuration discovery
- Lab 7b: Create and attach volumes
- Task 1: Create a multi-attach volume
- Task 2: Explore how the volume is implemented
- Task 3: Attach the volume
- Task 4: Explore how volume attachment is implemented
- Task 5: Access the volume from the instances
- Task 6: Move the multi-attach volume to a third instance

- Task 7 (optional): Automatic volume deletion
- Task 8 (optional): Volume attachment tags
- Lab 7c: Launching an instance from a volume
- Task 1: Launch the instance
- Task 2 (optional): Compare an instance with ephemeral storage
- Lab 7d: Snapshots and backups
- Task 1: Recover file from snapshot
- Task 2: Backups
- Lab 7e (optional): Add a Cinder backend
- Task 1: Explore the current configuration
- Task 2: Add a volume backend
- Task 3: Create a volume type for the new backend and make it the default
- Task 4: Use the new volume type
- Lab 7f (optional): Specify volume type when root filesystem is a volume

Lab 8: OpenStack Object Storage (Swift)

- Lab 8a: Using the OpenStack Object Storage service GUI
- Task 1: Where does Glance keep its images?
- Task 2: Manage objects using the GUI
- Lab 8b: Command line
- Lab 8c (optional): Object versioning
- Lab 8d (optional): TempURL
- Lab 8e (optional): Large objects

Lab 9: OpenStack Metering (Ceilometer) and Orchestration (Heat)

- Lab 9a: Ceilometer alarms
- Task 1: Ceilometer and Gnocchi configuration
- Task 2: Generate and measure load
- Task 3: Set up and process alarms
- Task 4: Measuring groups of servers
- Task 5: Alarms on a group of instances
- Lab 9b: Orchestrating stacks
- Task 1: Create a simple stack
- Task 2: Create a stack with an autoscaling group
- Task 3: Create an autoscaling stack
- Task 4: Add parameters and output to the template
- Task 5: Explore autoscaling
- Task 6: Explore the orchestration section of Horizon